
Agenda

20 mins Basics of LIKWID Thomas Gruber

20 mins Activities at NERSC/CRD Charlene Yang

2 hours

LIKWID on AMD CPUs Thomas Gruber

LIKWID 5 on NVIDIA GPUs Thomas Gruber

Refinements on ECM Model Thomas Gruber

Mass Performance Data Collection Thomas Gruber

20 mins Q&A -

Charlene Yang
Application Performance Specialist

NERSC, LBNL

Performance-Related Activities at
NERSC/CRD

Activities at NERSC/CRD
• Roofline performance model

– NESAP, vendor integration
– Performance portability, scaling trajectories
– Instruction Roofline, integer Roofline, mixed Precision
– ERT, energy Roofline, Roofline for FPGA

• LDMS for mass performance data collection
– #SBATCH --profile=<tool>:<group>
– <tool> = vtune, likwid, ldms; <group> = flops, mem, bandwidth, …

• PAPI for Roofline
– #SBATCH --profile=timemory:roofline

Roofline Performance Model

Roofline Performance Model

§ Sustainable performance is bound by

§ Arithmetic Intensity (AI) =

FLOPs / Bytes

§ How did this come about?
à A CPU DRAM example

Peak GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

1

Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s

The Roofline Chronical
2005 - 2011 2013 - 2016 2017 - 2019 Future

R
es

ea
rc

h

§ Developed foundations for
the Roofline Model

§ Applied to kernels
using canonical
flops and bytes

§ Developed performance counter
Rooflines for CPUs and GPUs

§ Roofline for Simulations and
Machine Learning

§ Incorporated VPU%, divides,
integer operations

§ FPGAs, CGRAs, AI
processors, …

§ Asymmetric memory
hierarchies

§ Horizontal data movement
§ Effects of extreme

heterogeneity

Pr
ot

ot
yp

e

§ Created the ERT prototype
for CPUs and GPUs

§ Quantified
CUDA UVM
effects

§ Collaboration with CRD, Intel
and NVIDIA on hierarchical
Roofline

§ Integer/instruction/non-FP
Rooflines

§ Rooflines that serialize data
transfers (vs. assume
overlap)

§ Integration with
compilers/runtimes

Pr
od

uc
tio

n § Roofline model incorporated into
Intel Advisor

§ Installed at NERSC, LANL, etc

§ Roofline for GPUs
(multiple vendors)

§ Roofline for FPGAs/CGRAs
§ Integer/instruction/non-FP

Rooflines
§ CISC/DL instructions

2

The Roofline People
Researchers…
• Sam Williams (Roofline Lead, LBL/CRD)
• Doug Doefler (LBL/NERSC)
• Khaled Ibrahim (LBL/CRD)
• Nan Ding (LBL/CRD)
• Yunsong Wang (LBL/NERSC)
• Jack Deslippe (LBL/NERSC)
• Lenny Oliker (RAPIDS deputy, LBL/CRD)
• Terry Ligocki (LBL/CRD)
• Brian Van Straalen (LBL/CRD)
• Aleksandar Ilic (INESC, Portugal)
• Diogo Marques (INESC, Portugal)

Vendors/Industry…
• Zakhar Matveev (Intel)
• Max Katz, Magnus Strengert (NVIDIA)
• Constantios Evangelinos (IBM)
• Protonu Basu (Facebook; formerly LBL/CRD)
• Linda Lo (Facebook; formerly U. Utah)
• David Patterson (Google, formerly UC

Berkeley)

3

The Roofline Tree

Brings People Together
• NESAP
• CRD
• Intel
• NVIDIA
• all HPCers

Roofline Performance Model

03
Performance
Portability

06
Mixed
Precision

07
Instruction
Roofline

04
Energy
Roofline

05
Scaling

Trajectories

08
ERT

01
Performance
Optimization

02
Vendor

Integration

09
Outreach

1. Roofline drives optimization
NESAP

Roofline Drives Optimization

The Roofline Model
• helps you identify the bottlenecks
• guides you through optimization
• tells you when to stop

An example:
• NESAP for Cori - BerkeleyGW
(NERSC Exascale Scientific Application Program)

5

Roofline Drives Optimization

Optimization Path for Kernel-C (Sigma):
1. Add OpenMP
2. Initial Vectorization

• loop reordering
• conditional removal

3. Cache-Blocking
4. Improved Vectorization

• divides
5. Hyper-threading

6

Example 1: GPP, KNL, Cache Blocking

242 GFflop/s, Bound by
MCDRAM Bandwidth

Most Flops in the main
loop (⭕)

Read/Write 2MB of data
per inner loop iteration
➤ No reuse of data in
L1/L2, shown by
overlapping points at
MCDRAM bandwidth

BW Bound ➤ Increase
MCDRAM AI by adding
cache locality

Overlapping
points at
MCDRAM BW

7

Example 1: GPP, KNL, Cache Blocking

Cache blocking implemented
to achieve L2 data reuse

3x Increase in MCDRAM AI

Performance increased from
242 to 287 GFlop/s (+18%)

Why not 3x Flops increase?
➤ Not BW bound any more,
divide, shuffle and unpack
instructions involved

• T. Koskela, Z. Matveev, C. Yang, A. Adetokunbo, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. Shan, L. Oliker, J. Deslippe, R. Green,
and S. Williams, A Novel Multi-Level Integrated Roofline Model Approach for Performance Characterization, ISC’2018 Research Paper,
Jun 24-28 2018, Frankfurt

Example 1: GPP, V100, Hierarchical

Three experiments to study the effects of
• cache reuse (varying nw from 1 to 6)
• instruction mix (FMA vs. Mul/Add)
• memory coalescing

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadIdx.x
do iw = 1, nw #unrolled

compute; reductions

• Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for
the NERSC-9 Perlmutter System", Cray User Group (CUG), May 2019.

Example 2: XGC1, KNL

(Left) Hotspots for unoptimized XGC1 on 1024 Cori KNL nodes in Quad-Flat mode;
(Right) Speedup in XGC1 Electron Push routine after back porting the optimizations made in ToyPush kernel

3x

10

Example 2: ToyPush from XGC1

• Force Kernel:
• close to vector add peak
• not much optimization done

• Interpolate Kernel:
• L1 blocking, indirect memory access
• memory alignment, more efficient vectorization
• 10x speedup, closer to vector FMA peak

• Search Kernel:
• multiple exits, simd private, enable vectorization
• 3x speedup, closer to L2 bandwidth roof

• Code is available at
• https://github.com/tkoskela/toypush

Force Calc.
Interpolate
Search

Marker size ~= CPU time

11

Example 3: conv2d from TensorFlow

• Kernel tf.nn.conv2d

https://www.tensorflow.org

12

Example 3: TF / Forward Pass

#Filters
o Intensity ∝ #Filters
o Low L2 data locality
o Some use of TC’s (>FP16

FMA)… partial TC ceiling

#Kernel Size
o Intensity ∝ kernel size
o Low L2 data locality
o Autotuner switched FP32

algorithm to FFT at 9x9
o Some use of TC’s (>FP16

FMA)… partial TC ceiling

#Batch Size
o Constant performance(no!)
o FP16 performance anti-

correlated with batch size
o Performance << TC peak
o Transformation kernels
o Low L2 locality

13

Example 3: TF / Backward Pass

#Batch Size
o Autotuner chose different

(better) algorithm for FP32
with batch size = 64 (boost)

#Filters
o Close to FP16 TC peak
o Close to FP32 FMA peak

#Kernel Size
o Good FP32 performance

trend (almost peak)
o Autotuner chose to run

9x9 FP16 in FP32 !!

14

2. Vendor Integration
Intel VTune, LIKWID, Intel Advisor, NVIDIA nvprof

Data Collection on Intel CPUs

Way 1:
• Intel SDE for FLOPs (emulation)
• Intel VTune for DRAM bytes (HW counters)
• Runtime

• DRAM Roofline only

• Used by NESAP for Cori
– NERSC Exascale Science Application Program
– http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

15

Data Collection on Intel CPUs

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"
1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"2P
 H

SW
K

N
L

MFDn PICSAREMGeo

DRAM Rooflines of NESAP Codes

Data Collection on Intel CPUs

Way 2:
• LIKWID for FLOPs and bytes

– Both are based on HW counters
• Runtime

• Hierarchical Roofline

• Limited by quality of HW counters
• High-level characterization, no callstack

(need instrumentation)

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x1

T
)

H
P

G
M

G
 (

4
P

x8
T

)

C
o

m
b

u
st

o
r (

3
2

P
x1

T
)

C
o

m
b

u
st

o
r (

4
P

x8
T

)

M
F

IX
 (

3
2

P
x1

T
)

N
yx

 (
3

2
P

x1
T

)

N
yx

 (
4

P
x8

T
)

P
e

le
L

M
 (3

2
P

x1
T

)

W
a

rp
X

 (
3

2
P

x1
T

)

W
a

rp
X

 (
4

P
x8

T
)

B
a
n
d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

https://github.com/RRZE-HPC/likwid

17

Data Collection on Intel CPUs

Way 3:
• Intel Advisor, Roofline feature
• Instrument applications automatically

– one dot per loop nest/function
• FLOPs, bytes and runtime

• Hierarchical Roofline

• Integrates with other Advisor capabilities
• Benchmarks target system

Memory-bound, invest into
cache blocking etc

Compute bound: invest
into SIMD,..

18

Data Collection on Intel CPUs

New features in Intel Advisor 2019
(picture courtesy of Z. Matveev)

19

https://software.intel.com
/en-us/intel-advisor-
2019-release-notes

• C. Yang, S. Williams, Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System, CUG’2019, May 5-9 2019, Montreal, Canada

Data Collection on NVIDIA GPUs
• Still manual at this stage, but we have a recipe using nvprof.

• Runtime:
– Internal timers or nvprof --print-gpu-trace

• FLOPs:
– DP/SP/HP counters and metrics, nvprof --metrics

‘flop_count_dp/sp/hp’ or `tensor_precision_fu_utilization’

• Bytes for different cache levels:
– Bytes = (read transactions + write transactions) x transaction size
– nvprof --metrics ‘metric_name’ e.g. gld/gst_transactions

• Hierarchical Roofline

The Rest of the Tree

Brings People Together
• NESAP
• CRD
• Intel
• NVIDIA
• all HPCers

Roofline Performance Model

03
Performance
Portability

06
Mixed
Precision

07
Instruction
Roofline

04
Energy
Roofline

05
Scaling

Trajectories

08
ERT

01
Performance
Optimization

02
Vendor

Integration

09
Outreach

3. Performance Portability
Definition, Metric, Roofline, KNL, V100

Introduction
• No consensus on the definition or metric for performance portability
• But Pennycook et al…

• Architectural Efficiency [Williams et al]

Peak FLOP/s

Peak Bandwidth
Arithmetic Intensity

𝜱 𝑎, 𝑝,𝑯 = '
|𝑯|

∑ *
+,(.,/)

�
2∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		

𝑒2 𝑎, 𝑝 =
𝑃2(𝑎, 𝑝)

min	(𝐹2, 	𝐵2	×	𝐼2(𝑎, 𝑝))

22

• Bottleneck shifts at 𝒏𝒘 = 𝟐 on KNL vs. V100 (no-FMA performance)
• Easier to achieve no-FMA ceiling on V100 than KNL, due to higher ratio

of instruction issue bandwidth vs. instruction execution bandwidth

Bottleneck Changes

• C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen, B. Cook, D. Doerfler, L. Oliker, J. Deslippe, S. Williams, An
Empirical Roofline Methodology for Quantitatively Assessing Performance Portability, SC’2018 P3HPC Workshop, Nov 11-16 2018, Dallas

• No FMA: performance portability consistently > 80%
• FMA: benefit is far less than 2x at high 𝒏𝒘; architectural efficiency suffers

(so does performance portability)
• Could regain some architectural efficiency if non-floating-point vector

operations were considered

Architectural Efficiency 𝑛𝑤 = 1 𝑛𝑤 = 2 𝑛𝑤 = 3 𝑛𝑤 = 4 𝑛𝑤 = 5 𝑛𝑤 = 6

FMA
KNL 84.98% 77.50% 66.77% 55.28% 46.56% 39.65%
V100 97.36% 91.50% 76.70% 65.44% 65.07% 66.38%

Performance Portability 90.76% 83.92% 71.39% 59.93% 54.28% 49.65%

No-FMA
KNL 82.06% 72.95% 73.74% 78.72% 81.28% 82.81%
V100 92.88% 92.88% 97.43% 98.91% 1 99.73%

Performance Portability 87.14% 81.72% 83.95% 87.67% 89.93% 90.49%

Bottleneck Changes

24

4. Energy Roofline
Performance, Power Consumption, Energy Efficiency

Energy Roofline - GEMM

Cache-aware Roofline Models

• A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer Architecture Letters (2013)
• A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-aware Power & Energy-Efficiency…”, IEEE Transactions on Computers (2017)

VERSION OPTIMIZATION STRATEGY

1 Basic implementation: Row-major matrices

2 Improved memory access by transposing B matrix

3, 4, 5 Blocking for caches: L3 (pt. 3), L2 (pt. 4) and L1 (pt. 5)

6 Highly optimized Intel MKL implementation

• Power Consumption based on CARM
– Relates Watts with FLOPs/bytes
– Defines power envelope for different

types of FP and memory operations

Energy Roofline - Use Cases
Application Characterization

Online Monitoring

• Ilic, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency Modeling…”, IEEE Transactions on Computers (2017)
• Antão, D., et.al.,“Monitoring Performance and Power for Application Characterization with CARM”, PPAM’13

2-4

2-2

20

22

24

2-7 2-6 2-5 2-4 2-3 2-2 2-1 20 21

Pe
rf

or
m

an
ce

 [G
flo

ps
/s

]

Operational Intensity [flops/byte]

AVX MAD

AVX MUL/SSE MAD

SSE MUL/DBL MAD

DBL MUL

DRAM

tonto
vdot

vmmul
gamess

gromacs
namd

povray
spvdot

spvvmul
milc

soplex
GemsFDTD

dgemm
lu

calculix
2dfftc
3dfftc

spmmul
vvmul

zeusmp
cactusADM

leslie3d
lbm

DBL SSE AVX

Arithmetic Intensity [flops/byte]
 23

 24

 25

 26

 27

 28

2-7 2-6 2-5 2-4 2-3 2-2 2-1

Po
w

er
 [W

]

Operational Intensity [flops/byte]

L1 (AVX LD)

L1 (DBL)

L1 (DBL MUL)

DRAM (AVX)

L3 (AVX)

DRAM (DBL)

L1 (AVX LD+ST)

Arithmetic Intensity [flops/byte]

2-8

2-6

2-4

2-2

20

2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1 20 21 22

En
er

gy
 E
ffi

ci
en

cy
 [G

flo
ps

/J]

Operational Intensity [flops/byte]

AVX MAD
AVX MUL/SSE MAD
SSE MUL/DBL MAD

DBL MUL

DRAM

Arithmetic Intensity [flops/byte]

2-1

20

21

22

23

2-5 2-4 2-3

Pe
rf

or
m

an
ce

 [G
flo

ps
/s

]

Operational Intensity [flops/byte]

SSE MUL

DBL MULL1 (SSE)

L1 (DBL)

DRAM (SSE)DRAM (DBL)

DBL SSE AVX

Arithmetic Intensity [flops/byte]

 23

 24

 25

 26

 27

 28

2-4 2-3 2-2

Po
w

er
 [W

]

Operational Intensity [flops/byte]

L1

L1 (MUL)

L2
L3

DRAM

Arithmetic Intensity [flops/byte]

20

21

2-2 2-1 20

En
er

gy
 E
ffi

ci
en

cy
 [G

flo
ps

/J]

Operational Intensity [flops/byte]

L1 (AVX MAD)

L2
L3

Arithmetic Intensity [flops/byte]

5. Scaling Trajectories
What’s causing bad scaling from Roofline point of view?

Roofline Scaling Trajectories

• We often plot performance as
a function of thread concurrency

– Carries no insight or analysis
– Provides no actionable info

#Threads
1 2 4 8 16 32 64

27

Roofline Scaling Trajectories
§ We often plot performance as a

function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

§ Use Roofline to analyze thread
(or process) scalability
o 2D scatter plot of performance as a

function of intensity and concurrency
o Identify loss in performance due to

increased cache pressure (data
movement)

• Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method for Parallel Application and Architectural Performance
Analysis", HPBench, July 2018

6. Mixed Precision
FP64, FP32, FP16, CPU, GPU

Mixed Precision

Benefits of reduced/mixed precision:
● From FP64 to FP32

○ 2x due to bandwidth savings or
compute unit availability

○ similar for network communication
● More support on modern architectures

○ ~15x FP16 over FP64 for some ops

NESAP collaboration with CRD (Costin Iancu)
and NVIDIA (Chris Newburn)

FP16 Peak

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

FP64 Peak

Mixed Precision

29

7. Instruction Roofline
FLOP, INTOP, IPC

Instruction Roofline
§ FP instructions can be the

minority in many HPC codes
§ Emerging domains have ~no FP

o Graphs
o Hash tables
o Bloom filters
o Searches

§ FLOPs is agnostic of precision,
scalar/vectors/tensors, …

At
ta

in
ab

le
 V

U
O

P/
s

Arithmetic Intensity
(FLOP:Byte -> VUOP:Byte)

§ Instruction Roofline

Peak VUOP/s

30

VUOP RooflineFLOP Roofline

§ FMA cuts Arithmetic Intensity in
half (half the number of VUOPS)

§ FMA doesn’t change Arithmetic
Intensity (FMA == FMUL+FADD)

§ Vector integer operations
increases Arithmetic Intensity

§ Vector integer operations don’t
change Arithmetic Intensity

§ Changing precision doesn’t change
Arithmetic Intensity

§ Reducing precision (64b, 32b, 16b)
increases Arithmetic Intensity

§ vectors/tensors reduce Arithmetic
Intensity (SIMD cuts VUOPS by 8x)

§ Vectors/tensors don’t change
Arithmetic Intensity

Ø Tells us about VPU/pipeline
utilization and bottlenecks

Ø Tells us about performance

31

Instruction Roofline

VUOPs-based RooflineFLOPs-based Roofline

8. Empirical Roofline Toolkit (ERT)
Machine Characterization, Peak FLOP/s, Bandwidths

Empirical Roofline Toolkit (ERT)
Theoretical compute ceiling on KNL:

Theoretical compute ceiling on V100:
𝟔𝟒	cores	×	𝟖	DP/vector	×	𝟐	FLOPs/FMA	×	𝟐	vectors	×	𝟏. 𝟐	GHz	 = 𝟐. 𝟒𝟔	TFLOP/s

𝟖𝟎	SMs	×	𝟑𝟐	FP64	cores/SM	×	𝟐	FLOPs/FMA	×	𝟏. 𝟓𝟑GHz = 𝟕. 𝟖𝟑	TFLOP/s

10%3%

10%22%

32 Voltar at UOregonCori KNL partition

Empirical Roofline Toolkit (ERT)
• ERT can’t detect all the ceilings yet - IN DEVELOPMENT!

– Haswell/KNL: L1, L2, L3/HBM, DDR
– V100: L2, HBM, DDR

• Our goal is to incorporate
– the full memory hierarchy
– instruction mix (e.g. FMA/no-FMA)
– data type (e.g. FP64, FP32, FP16)
– compute units

(e.g. CPU/CUDA core/Tensor core)

• Ceilings can be omitted if irrelevant

Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

Closing

The Roofline Tree is Flourishing

LBNL CRD Roofline Research:

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/publications/

Collaborate with us!

34

Acknowledgement

• This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office
of Science, under Award Number DE-AC02-05CH11231.

• This material is based upon work supported by the DOE RAPIDS SciDAC
Institute.

• This research used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

35

Thank You

